A Novel Updating Scheme for Probabilistic Latent Semantic Indexing
نویسندگان
چکیده
Probabilistic Latent Semantic Indexing (PLSI) is a statistical technique for automatic document indexing. A novel method is proposed for updating PLSI when new documents arrive. The proposed method adds incrementally the words of any new document in the term-document matrix and derives the updating equations for the probability of terms given the class (i.e. latent) variables and the probability of documents given the latent variables. The performance of the proposed method is compared to that of the folding-in algorithm, which is an inexpensive, but potentially inaccurate updating method. It is demonstrated that the proposed updating algorithm outperforms the folding-in method with respect to the mean squared error between the aforementioned probabilities as they are estimated by the two updating methods and the original non-adaptive PLSI algorithm.
منابع مشابه
Bayesian learning for latent semantic analysis
Probabilistic latent semantic analysis (PLSA) is a popular approach to text modeling where the semantics and statistics in documents can be effectively captured. In this paper, a novel Bayesian PLSA framework is presented. We focus on exploiting the incremental learning algorithm for solving the updating problem of new domain articles. This algorithm is developed to improve text modeling by inc...
متن کاملRPLSA: A novel updating scheme for Probabilistic Latent Semantic Analysis
A novel updating method for Probabilistic Latent Semantic Analysis (PLSA), called Recursive PLSA (RPLSA), is proposed. The updating of conditional probabilities is derived from first principles for both the asymmetric and the symmetric PLSA formulations. The performance of RPLSA for both formulations is compared to that of the PLSA folding-in, the PLSA rerun from the breakpoint, and well-known ...
متن کاملProbabilistic Latent Semantic Indexing Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is able to deal with domain{speci c synonymy as well as with polysemous words. In contrast ...
متن کاملEfficient Probabilistic Latent Semantic Indexing using Graphics Processing Unit
In this paper, we propose a scheme to accelerate the Probabilistic Latent Semantic Indexing (PLSI), which is an automated document indexing method based on a statistical latent semantic model, exploiting the high parallelism of Graphics Processing Unit (GPU). Our proposal is composed of three techniques: the first one is to accelerate the Expectation-Maximization (EM) computation by applying GP...
متن کاملLatent Semantic Indexing Based on Factor Analysis
The main purpose of this paper is to propose a novel latent semantic indexing (LSI), statistical approach to simultaneously mapping documents and terms into a latent semantic space. This approach can index documents more effectively than the vector space model (VSM). Latent semantic indexing (LSI), which is based on singular value decomposition (SVD), and probabilistic latent semantic indexing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006